
AIDS and a risk-based model

Numerical Results of the Risk-Based Model
by James M. Hyman, E. Ann Stanley, and Stirling A. Colgate

Here we will present numerical
solutions to the full risk-based
biased-mixing model. These so-

lutions validate the simplified version
of the model presented in the main text
and illustrate how variations in the input
parameters affect the predicted course of
the epidemic. The equations and param-
eters of the model are defined in “Math-
ematical Formalism for the Risk-Based
Model of AIDS,” hereafter referred to
as “Math Formalism.” The model tracks
the time evolution of three sectors of
the population: the sexually active sus-
ceptible S (t, r); the sexually active in-

deaths due to AIDS and the long time
between HIV infection and conversion
to AIDS. It also allows us to vary as-
sumptions about the infectiousness as a
function of time since infection and the
mixing between various risk groups in
the population.

First we will assess the validity of
the predictions in the main text. The
analytic calculation presented them pre-
dicted that biased mixing among the
sexually active population gives rise to
a saturation wave of infection, which
yields power-law growth in both the
number infected and the number of peo-
ple with AIDS. That calculation was
based on the following assumptions: the
initial susceptible population So(r) is
distributed in risk behavior as r -3 for
r greater than the mean value of r; the
infectiousness i is constant; the cumula-
tive probability of conversion to AIDS

ter infection and then increases linearly

individual develops AIDS by 18 years
after infection; and finally, the same
fraction is infected in all risk groups

before the start of the saturation wave,
The wave of infection was then calcu-
lated as if each risk group had a growth
rate proportional to r and grew to satu-
ration independently of all other groups.
That is, we did not account for mix-
ing between people with different risk
behavior because the calculation is too
difficult to perform analytically, More-
over, AIDS cases and deaths were not
removed from the infected population.
The result was that the number infected
grows as t2 and the number of people
with AIDS grows at t3.

To check whether mixing among in-
dividuals with different risk behavior

 alters that result, we solved the full set
of equations given in “Math Formal-
ism.” We used the same assumptions
and conditions outlined above except
that we allowed mixing between people
with different risk behavior r. We found

that when mixing is restricted to people
whose risk behaviors are within a factor
of 2 of each other, that is, the mixing
is biased, a saturation wave of infection
moves from high- to low-risk groups
and the number infected grows as t2,
as predicted by the analytic calculation
in the main text. Also, when mixing
is random, or homogeneous, that is, is
based only on availability, the number
infected grows exponentially, the rel-
ative growth rate is constant, and the
fastest growth occurs in the population
with the most likely risk. Thus, dou-
bling times for biased mixing are shorter
initially and later become longer than
those for random mixing.

Now let’s consider numerical solu-
tions to the full model under more gen-
eral assumptions, We will first com-
ment on their overall behavior and then
present specific solutions. The numer-

The heart of the risk-based model is the complicated functional form of the rate of

We will describe this function in words:

Rate of Number of Rate of sexual lnfectious- Probability that
ness per a person with

for a – per year persons with risk contact x risk s is
susceptible behaviors r and s infected\

The

iors r and s. It is defined in terms of an acceptance function f(r, s) that determines
the range from which partners are chosen.
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ical results of the model change as
we vary the input parameters So(r),

Formalism” for the definitions of these
parameters). The most critical param-
eters for determining the course of the
epidemic are the initial distribution
of risk behavior among the suscepti-
ble population So(r) and the functions

mine the rate of infection per suscepti-

In particular, the acceptance function
f(r, s) specifies the amount of mixing
between different risk groups. Provided
the mixing is biased, So(r) decays as
r - 3 or r - 4 and the numerical value of

and 0.001 (this last provision determines
the time scale of the epidemic), numer-
id solutions of our model show that
the infection travels as a saturation wave
from high- to low-risk groups for ap-
proximately the first 20 years. During
those years the cumulative number in-
fected and the cumulative number of
people with AIDS grow as polynomials
in time, rather than as exponential.

By varying the functional forms of

infectiousness since time of infection,
we can raise or lower the degree of the
polynomial growth, but in all of our cal-
culations with biased mixing, the growth
remains polynomial after the initial tran-
sients.

With these general remarks as back-
ground, we present various numerical
solutions to the model. To obtain these
solutions, Eqs. 9-10 in “Math Formal-
ism” were integrated numerically with
an explicit Adams-Bashford-Moulton
solution method to an accuracy of 10-6

and r were calculated on a uniform grid
of between 71 and 201 mesh points,
and the convergence of solutions has
been verified to within a few per cent.
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the main text (dashed line).

We emphasize, however, that although
the solution techniques are accurate, the
equations are still crude approximations
and the results are meant to illustrate
the general behavior of the model, not
to give accurate forecasts of the future.
Even the full model is much too sim-
plistic to be used as a predictive tool.

For all the solutions presented here,
we assume an initial population of 10
million people whose risk behavior
(which we identify as the number of
new partners per year) is distributed
as an inverse cubic with a mean of
24 partners per year. We use the ini-

ditional probability for “converting to
AIDS, shown in, Fig. 1. (The relation-

in the figure caption.) We use the con-
stant value µ = 0.02 per year for the
fractional rate of maturation. The frac-

is obtained from CDC data. Also, for
simplicity in this series of calculations,
we assume the number of contacts per

The parameter that we vary from one

growth rate of infection among suscepti-
ble with r partners per year. In partic-

acceptance function f(r, s) and the in-
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The figure shows f(r, s) versus s for r =

of r, f(r, s) determines the fraction of partners
with risks chosen by people with risk r. Here
f(r, s) specifies that most partners of a person
with risk r have risk behaviors between ½r and
r; that is, the mixing is heavily biased toward
people with similar risk behavior.

shows the pattern of Infectiousness that we

postulate for a single individual. In this case

the individual develops AIDS 8 years after in-

fection. The initial peak of Infectiousness for

this Indlvldual is always taken to be greater

than 6 months because our numerical tech-

niques are not yet designed to handle sharper

peaks.
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BASELINE SOLUTION

Fig. 4. The time-dependent behavior of vari-
ous sectors of the population predicted by the
baseline calculation. Despite a slow migration
of people into the total population, the high
mean new-partner rate of 24 partners per year
drives an epidemic that substantially depletes
the total population as a large fraction become
infected and then die of AIDS. The very slow
progression from infection to AIDS and rapid
death from AIDS produces a delay between
start of infection and the AIDS epidemic. Also,
at all times many fewer people have AIDS than
are infected.

SATURATION WAVE IN
BASELINE SOLUTION

Fig. 5. Distributions of the number infected
over number of new partners per year at times
t
line calculation. The dotted line shows the
distribution of the total population in the ab-
sence of HIV. As time progresses, a wave
of infection moves from high-risk to low-risk
groups. Essentiality all members of high-risk
groups become infected, and the populations
of those groups decrease to very low lev-
els as everyone develops AIDS and dies. As
the wave moves progressively through lower-
risk groups, an ever smaller
groups becomes infected.

fraction of those
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factiousness per contact since time from

We present first a “baseline” solution.
The acceptance function f(r, s) and the

solution arc described in Figs. 2 and 3,
respectively. The acceptance function
in Fig. 2 is an inverse quartic function
of r and s, which describes the proba-
bility that a person with risk behavior r.
chooses a partner with risk behaviors:

year. The figure shows f(r, s) versus
s for three different values of r. As r
increases, the width of the acceptance
function increases. In rough terms,
this function describes a biased mix-
ing pattern in which a person with risk
r chooses most of his or her partners
from a group that ranges in risk behav-
ior from ½r to 2r.

Figure 3 is a plot of i(T), the mean
infectiousness per partnership versus
time since infection. The mean infec-
tiousness is an average over the infec-
tiousness of many individuals each of
whom develops AIDS at different times

infection. Figure 3 also shows the in-
fectiousness curve for an individual who
develops AIDS 8 years after infection.
The infectiousness for this individual is
assumed to have an initial peak, a la-
tency period of about four years, and
finally a steady rise. The average infec-
tiousness for each individual is assumed
to be 0.025. The initial peak is about 6
months wide, probably too wide to be
realistic, but our numerical code does
not yet have the capability of resolving
a burst that is only a few weeks in du-
ration. Nevertheless, the wider shape
that we have used serves the purpose of
illustrating what the impact of an initial
peak of infectiousness can be.

The infected population at t = 0

Time (years)

“CUBIC GROWTH” OF
BASELINE SOLUTION

Fig. 6. The cube root of the cumulative num-
ber of AIDS cases as a function of time for the
basellne solutlon. Although the curve is not
perfectly straight, a t3 growth in the cumule-

  tive number of AIDS cases Is a good flt to thls
calculatlon between t = 1 and t = 9 years.
Thus, desplte the many complexities included
In the numerical model, its solutions behave
quite slmllarly to the analytlc calculatlon of the
main text. Note that the calculated time scales
are fixed by the average value we assume for

uncertain.

contains 1000 individuals distributed as
a narrow Gaussian function of r cen-
tered at 175 partners per year and dis-

assume that the epidemic starts among
the highest-risk groups, this choice does
not have a major impact on the numeri-
cal results. In particular, if the infecteds
at t = O are centered at the mean, the
epidemic follows a similar course but
starts about 2 years later. If the infect-
eds at t = O are distributed over all risk
groups, the saturation wave takes off
sometime between O and 2 years later.

The input parameters and initial con-
ditions just described yield our “base-
line” solution. Figure 4 shows S(t),I(t),
and A(t) over a 40-year period. During

to reach the lower-risk groups.
Figure 6 is a plot of the cube root

of the cumulative number of AIDS
cases as a function of time. The nearly
straight line between 1 and 10 years
shows that the calculation is not in-
consistent with the observation that the
number of AIDS cases grows as t3 dur-
ing the initial stages of the epidemic.
The main reason that the growth is not
purely cubic is the deviation of the ini-
tial profile So(r) from a pure inverse cu-
bic. However, the profile we chose for
So(r) fits the available partner-change-
rate data much better than does Eq. 13
in the main text. We have also assumed
a fairly large infectivity, which speeds
up the progress of the entire epidemic.
Consequently, by 10 years from the start
of the saturation wave, the wave front
has reached the lowest-risk populations,
which, in turn, slow down the cubic
growth. Although the solution just pre-
sented roughly matches the observed
cubic growth of AIDS, it does not prove
that the input parameters are correct
but rather suggests the basic ingredients
needed to produce the type of epidemic
we are experiencing. A slightly differ-
ent mix of input parameters yields very
similar growth.

The assumption of biased mixing is
the feature that sets this model apart
from other models. Let’s see how the
epidemic changes when this assumption
is relaxed. Figure 7 shows three solu-
tions to the model that differ only in the
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BIASED VERSUS RANDOM MIXING

Fig. 7. Time-dependent behavior of the num-

ber infected and the number of AIDS cases for

various degrees of mixing among people with

different risk behaviors. The baseline calcu-

lation (solid line) corresponds to the highest

bias, or narrowest range of mixing. As the

range of mixing widens, the epidemic changes

dramatically. The growth pattern of the num-

ber infected appears to change more than that

of the AIDS cases partly because of the scaie

of the piot, and partly because the siow con-

version to AIDS smears out the effects of the

change in the number infected. More biased

mixing produces a more rapid initial growth

than does random mixing, but growth slows

down as the infection spreads among low-risk

people and the total epidemic is smaller than

that produced by random mixing. When mix-

ing is random, high-and low-risk people, pass

the virus back and forth between them, so

an infected person is much more likely to en-

counter an uninfected person until the whole

population saturates.

CUMULATIVE GROWTH IN AIDS
AS MIXING VARIES

Fig. 8. Cumulative AIDS cases versus time for

the calculation in Fig. 7. When mixing is ran-

dom, the cumulative number of AIDS cases

grows exponentially until the entire popula-

tion reaches saturation of infections. When

the mixing is highly biased, the number grows

more as a polynomial.
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EFFECTS OF VARYING
THE INFECTIVITY

as a function of new-partner rate at t = 10
years for the calculations in Fig. 7. This figure
demonstrates most dramatically the effects of
varying the mixing patterns. When people
have a strong bias to mix with others of sim-
ilar risk, few people of low risk are Infected
In the early stages of the epidemic. In con-
trast, when partners are chosen purely on the
basis of availability, people of low risk are in-
fected early. The fact that early AIDS eases
and early cases of infection wars among peo-
ple with high new-partner rates is evidence for
biased mixing in the U.S. population.

level of mixing among different risk
groups. The solid lines show the base-
line solution in which the mixing is
strongly biased; that is, f(r, s) is an in-

The dotted lines show a solution with
less bias; that is f(r, s) is again an in-

= 0.17 so the curves
of f(r, s) versus s for different values
of r have much wider peaks than those
in Fig. 2. The dashed lines show a so-
lution with no bias; that is, f(r, s) = 1
corresponding to random, or homoge-
neous, mixing. Note that as the mixing
becomes less biased, the epidemic starts
off slightly later but then grows faster
because the doubling time increases at a
slower rate.

Figure 8 shows the cumulative num-
ber of people with AIDS as a function
of time for the three types of mixing.
For random mixing, the number of
people with AIDS grows nearly ex-
ponentially; that is, the doubling time
is nearly constant. As the mixing be-
comes more biased, the number of peo-
ple with AIDS grows more like a low-
order polynomial.

It is worth cautioning that the initial

o 10 20 30 40

Time (years)

distribution of infecteds, which is arbi-
trary, can have a significant impact on
the early growth of the epidemic, espe-
cially if the initial growth rate is low.
For the random-mixing case, growth in
infections is so low initially that most
people getting AIDS in the first 10 years
were infected at t = O. Consequently,
since those infected at t = O were dis-
tributed linearly with T, the number of
AIDS cases grows as a polynomial dur-
ing the first 10 years, and only the num-
ber infected grows exponentially. After
10 years both the number infected and
the number of AIDS cases grow expo-
nentially. For the cases of more-biased
mixing, the initial growth in number of
infecteds is more rapid, so the initial

for a shorter period of time. Since our
initial conditions are arbitrary, rather
than based on knowledge of the earliest
stages of the epidemic, the solution tran-
sients just described are also arbitrary.

Figure 9 shows the number infected
versus risk behavior at t = 10 years
for each of the three mixing patterns.
We see that random mixing not only
produces a faster-growing epidemic but

also causes the epidemic to reach the
low-risk groups almost immediately.
Figures 4a and 4b of the main text also
illustrate that point. The solution with
biased mixing shows a saturation wave
of infection traveling from high-to low-
risk groups, but the solution with homo-
geneous mixing shows no such wave.
Instead, the majority of those infected
are always in the low-risk groups. Since
the average partner rates for the earliest
AIDS cases and infected homosexuals
were high compared to the mean in the
general homosexual population, these
numerical results support the conclusion
in the main text that biased mixing has
produced the cubic growth of the AIDS
epidemic.

We will now examine the effects of

ness since time of infection. In the main

but we also discussed the effects of a
variable infectiousness. Here we display
four solutions, each of which uses a dif-

In all cases the mean infectiousness of
an individual over the course of infec-
tion is 0.025. The solid lines correspond
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t = 10 years

o 20 40 60 80 100
New Partners per Year, r

to the baseline solution shown earlier;

The dashed lines are the solution when

the solutions when the infectivity of a
person getting AIDS at 8 years has a
very large initial peak, then a 4-year pe-

since infection. The dash-dot lines are

peak, but instead, a person’s infectiv-
ity increases continuously between the
time of infection and the time of AIDS.

the fastest-growing epidemic, the ab-
sence of an initial peak produces the
slowest-growing epidemic, and a con-

demic that is closest to the baseline
solution but grows a bit more slowly
at first, then somewhat faster, and fi-
nally approaches a similar steady state.
(Note that the vertical scale in Fig.10
is a blow up of the vertical scale in
Fig. 7.) In all cases the growth is “poly-
nomial” in that the doubling times in-
crease continuously. Nevertheless, the

the course of the epidemic.

ture course of the present epidemic
cannot be estimated. Similarly, ade-
quate data on the mixing patterns among
different risk groups is sadly lacking.
If nothing else, our risk-based model
points out the areas for which more data
are needed. We hope that this work
will help to guide the data collection
and analysis efforts that are now under
way. ■

INFECTEDS VERSUS
AS MIXING VARIES

RISK

Fig. 10. Tlme-dependent behavior of the num-
ber infected and the number of AIDS cases
for various assumptions about the time-depen-
dence of Infectiousness. In these calculations
we assign the same value for the average in-
vectivlty of any individual over the course of
the epidemic and vary only the distribution of
infectivity with time. A burst of infectivity Just
after infection causes the disease to spread
very rapidly in the high-risk groups but has
less effect as the disease spreads to groups
with lower new-partner rates. A slowly rising
infectivity several years after the initial burst
sustains the epldemlc In low-risk groups. With
no initial burst of infectivity, but only a slow in-
crease from Infectlon until death, the epidemic
initially spreads very slowly, but as more peo-
ple approach the later stages of Infection, the
epidemic gains momentum. Without control
measures the epidemic may eventually affect
as many people as the other examples shown
In the figure.
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